
C# Chapters 1 to 6 – Ebook Study
Summaries

Chapter 1: Introduction
 • Programming is writing instructions to automate tasks using logic.

 • The software development cycle includes: Requirements → Design→
Implementation→ Testing→ Deployment →Maintenance.

 • C# is a modern, object-oriented, high-level language developed by Microsoft.

 • .NET Framework provides CLR, MSIL, assemblies, and JIT compiler support.

 • Visual Studio is a full-featured IDE with tools like IntelliSense and Debugger.

 • Alternatives to Visual Studio include MonoDevelop, SharpDevelop, and CLI tools like
csc.

Chapter 2: Data Types
 • Data represents facts, values, or instructions in memory.

 • Primitive types include int, float, char, bool, decimal – stored directly in memory.

 • Variables must be declared with a type before use and can be initialized during
declaration.

 • Literals are fixed values, e.g., 10, 'A', true. Use suffixes for long (L), float (f).

 • Type conversion can be implicit (safe) or explicit (casting). Use Convert and Parse.

 • Nullable types (e.g., int?) allow null values. Use .HasValue and .Value to
check/access.

 • Type inference with 'var' allows the compiler to infer the type.

 • Constants are declared using 'const' and are immutable.

 • Naming conventions: camelCase for variables, PascalCase for methods/constants.

Chapter 3: Operators & Operands
 • Operators perform operations on data: arithmetic, assignment, comparison, logical,

bitwise.

 • Arithmetic: +, -, *, /, %, follow precedence rules. Integer division truncates.

 • Assignment: =, +=, -=, etc. simplify operations.

 • Comparison: ==, !=, <, >, <=, >= return boolean values.

 • Logical: &&, ||, ! combine boolean expressions; used in conditions.

 • Special operators: ++, --, ?: (ternary), ?? (null-coalescing).

 • Expressions combine operators and operands to produce results.

 • Overflow occurs when values exceed type limits. Use 'checked' to detect.

 • Bitwise operators (&, |, ^, ~, <<, >>) work at the binary level.

Chapter 4: Output
 • Console.Write() prints without newline; Console.WriteLine() adds newline.

 • Use escape characters like \n (newline), \t (tab) for formatting.

 • String interpolation ($"{a} + {b} = {sum}") and format specifiers (F2, C, P) enhance
output.

 • Console.ReadLine() reads input as string – requires conversion to int, float etc.

 • Use int.Parse(), double.Parse(), Convert.To<Type>() for type-safe conversions.

 • int.TryParse() avoids exceptions when parsing invalid input.

 • Unicode output requires setting Console.OutputEncoding = Encoding.UTF8.

 • Console.Read() reads ASCII code, Console.ReadKey() reads a keypress (use
.KeyChar).

 • Practice programs: Input/output for sum, greetings, and basic interaction.

Chapter 5: Conditional Statements
 • Conditional logic directs code execution based on boolean expressions.

 • if statement executes a block if condition is true.

 • if-else provides alternate execution paths.

 • else-if ladder checks multiple conditions in sequence.

 • switch-case handles multiple fixed values; use break to avoid fall-through.

 • Common errors: using = instead of ==, nesting confusion, missing break.

 • Best practices: clear structure, avoid deep nesting, use switch when applicable.

Chapter 6: Loops
 • Loops repeat tasks and reduce code duplication.

 • while loop: pre-condition check; executes while condition is true.

 • do-while loop: post-condition; runs at least once.

 • for loop: fixed iterations with initializer, condition, and increment.

 • Nested loops are used for matrix or grid operations; increase complexity.

 • break exits loop immediately; continue skips to next iteration.

 • Infinite loops: no terminating condition; used in menu-driven programs.

 • Loop patterns: counting, sum/product, condition-based iteration.

